

Convolution Primitives in HyperFun

Images by Brian Wyvill

HyperFun Library

Primitives

Algebraic primitives:
hfSphere, hfEllipsoid, hfCylinder, hfEIICylinder, hfEIICone, hfTorus, hfSuperel, hfBlock
Skeletal objects:
hfBlobby, hfMetaball,
hfSoft

Convolution objects:

hfConvPoint, hfConvLine, hfConvArc, hfConvTriangle, hfConvCurve, hfConvMesh
Procedural objects:
hfNoiseG

Operations

hfScale, hfShift, hfRotate, hfTwist, hfStretch, hfTaper hfBlendUni, hfBlendInt

Skeletal Surface Definition

$$
\begin{gathered}
F(P)-T=0 \\
\text { with } F(P)=\sum_{i=1}^{N} c_{i} F\left(r_{i}\right)
\end{gathered}
$$

N is the number of skeletal elements,
F_{i} is the individual scalar field,
(blending function) of the i-th element,
r_{i} is the distance from P to the \dot{r} th element,
T is the threshold (or level value).

Convolution Integral

Defining function of a convolution primitive:

$$
f(X)=\int_{R^{3}} s(P) h(X-P) d P
$$

- $s(X)$ is a predicate function defining geometry of the skeletal element
- $h(X)$ is a convolution kernel

Usually integration requires heavy numerical calculations, but we use analytical solutions for integrals over several skeletal elements.

Skeletal elements

Point

Line

Images by Yuichiro Goto

Convolution primitive: Skeletal Points

hfConvPoint(x,vect,S,T)

- \mathbf{x} - given point coordinates for the function evaluation;
- vect - linear array of skeleton points' coordinates organized as ($\left.x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots\right)$;
- S - array of inverse kernel width parameters for each skeletal point; smaller S_{i} means bigger i-th component;
- \mathbf{T} - threshold value for the entire model; smaller \mathbf{T} means entire expanded surface; bigger \mathbf{T} means entire contracted surface.

Convolution primitive: Skeletal Points

Smaller S_{i} means bigger i-th component

$S=1.0$
 $\mathrm{T}=0.1$
 $S=0.5$
 $\mathrm{T}=0.1$

$$
\begin{aligned}
& \mathrm{S}=0.35 \\
& \mathrm{~T}=0.1
\end{aligned}
$$

Convolution primitive: Skeletal Lines

hfConvLine(x,begin,end,S,T)

- \mathbf{x} - given point coordinates for the function evaluation;
- begin - linear array of beginning points' coordinates of line segments, organized as ($\mathrm{x}_{\mathrm{b} 1}, \mathrm{y}_{\mathrm{b} 1}, \mathrm{z}_{\mathrm{b} 1}, \mathrm{x}_{\mathrm{b} 2}, \mathrm{y}_{\mathrm{b} 2}, \mathrm{z}_{\mathrm{b} 2}, \ldots$);
- end - array of ending points' coordinates of line segments, organized as ($\mathrm{x}_{\mathrm{e} 1}, \mathrm{y}_{\mathrm{e} 1}, \mathrm{z}_{\mathrm{e} 1}, \mathrm{x}_{\mathrm{e} 2}, \mathrm{y}_{\mathrm{e} 2}, \mathrm{z}_{\mathrm{e} 2}, \ldots$);
- S - array of inverse kernel width parameters for each skeletal line segment; smaller S_{i} means bigger i i-th component;
- T - threshold value for the entire model; smaller T means entire expanded surface; bigger \mathbf{T} means entire contracted surface.

Convolution primitive: Skeletal Lines

Convolution primitive defined by three line segments.

Convolution primitive: Skeletal Curve

hfConvCurve(x,vect,S,T)

- x - given point coordinates;
- vect - linear array of skeleton curve points' coordinates organized as ($\left.x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots\right)$;
- \mathbf{S} - array of inverse kernel width parameters;
- T-threshold.

Convolution surface with a skeleton curve defined by five points.

Convolution primitive: Skeletal Arcs

hfConvArc(x, center,radius,theta,axis,angle,S,T)

- x - given point coordinates
- center - coordinate array for centers of arcs
- radius - array of arcs' radii
- theta - array of arcs' angles measured from positive x-axis counter-clockwise, 360 degrees are used for the full circle)
- axis - array of vectors defining axis of rotation for each arc placed on a local plane parallel to the xy-plane
- angle - angles of rotation for arcs around axis of rotation
- S - array of inverse kernel width parameters
- T - threshold.

Convolution primitive: Skeletal Arcs

Convolution primitive defined by two skeletal arcs

- two full circles with theta $=360$
- one rotated about x-axis

$$
\operatorname{arcs}(x[3], a[1])\{
$$

theta $=[360.0,360.0]$;
axis $=\left[\begin{array}{lll}0.0, & 0.0,1.0 \\ 1.0, & 0.0 & 0.0\end{array}\right] ;$
angle $=[0.0,90.0]$;
$\mathrm{s}=[0.5,0.5]$;
arcs $=$ hfConv $\operatorname{Arc}(x$, center, radius, theta, axis, angle, $\mathrm{s}, 0.5$);

Convolution primitive: Skeletal Triangles

hfConvTriangle(x,vect,S,T)

- \mathbf{x} - given point coordinates;
- vect - coordinate array for vertices of triangles, 9 elements for each triangle organized as $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}, \mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3} \ldots\right) ;$
- S - array of inverse kernel width parameters;
- T-threshold.

Convolution surface with four skeleton triangles.

Convolution primitive: Skeletal Mesh

hfConvMesh(x,vertex,index,S,T)

- x - given point coordinates;
- vertex - coordinate array for vertices of connected triangles organized as ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}, \mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3} \ldots$);
- index - list of vertex indices, 3 per triangle organized as $\left(i_{1}, i_{2}, i_{3}, \ldots\right)$
- S - array of inverse kernel width parameters;
- T-threshold.

$$
\begin{aligned}
& \text { vertex }=[\\
& -2.5,0.0,0.0 \\
& 0.0,2.5,0.0 \\
& \text { 2.5, 0.0, 0.0, } \\
& 0.0,-2.5,0.0] \\
& \text { index }=[1,2,3,1,4,3]
\end{aligned}
$$

Two triangles described in vertex and index arrays - memory saving structure

